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Data acquisition and sequence processing

RNA-seq data were acquired from the TCGA 
consortium, with all reads being pair-ended (length: 50, 
48, and 48 for breast, lung, and liver cancer respectively). 
Each sample has an average of > 150 million reads. 
The reads were aligned to the human genome version 
hg19 with MapSplice V2.0 [1], and the gene expression 
values were estimated using the RSEM pipeline [2] and 
normalized to the upper quartile of all expressed genes [3].

To analyze AS events on a genomic scale, we used 
the MISO event-centric pipeline with the hg19 v2.0 
annotation to calculate the inclusion ratio of all annotat-
ed AS isoforms (http://genes.mit.edu/burgelab/miso/ 
ann otations/ver2/miso_annotations_hg19_v2.zip). Further 
analyses were carried out for four major modes of AS: 
skipped exon (SE), retained intron (RI), alternative 3’ splice 
site (A3SS) and alternative 5’ splice site (A5SS). Based on 
the coverage of different splicing isoforms, each AS event 
was assigned with a PSI (Percent Spliced In) value ranging 
from 0 to 1. To qualify as a valid AS events, we require that 
both isoforms are detectable in at least 10 normal samples 
and 10 tumor samples for each cancer type.

Analyses of protein-protein-interaction among 
cancer-specific AS events

The genes containing cancer-specific AS events (or 
genes whose expression is associated with cancer-specific 
AS events) were obtained and submitted to the STRING 
database [4, 5] (http://string-db.org/) for protein-protein 
interactions (PPI) analysis. We used the combined score of 
0.4 as a cutoff and included five white nodes for network 
continuity. We used Cytoscape [6] to visualize the PPI 
network and the MCODE algorithm [7] to identify highly 
connected clusters within the network. See supplementary 
Table 2 and 3 for detailed parameters.

Calculation of evolutionary score

Sequence evolutionary score was downloaded 
from UCSC phastCons100 (http://hgdownload.cse.ucsc.
edu/goldenPath/hg19/phastCons100way/) [8]. Based on 
multiple sequence alignments of 100 vertebrate species, 
each nucleotide was given an evolutionary conservation 
score ranging from 0 to 1. Highly conserved regions are 
assigned with a higher score. PhastCons estimates the 
probability that each nucleotide belongs to a conserved 
element based on multiple alignments using a hidden 
Markov model. For each SE event, we extracted sequences 

from different regions near the alternative exon to 
calculate average conservation score in a sliding window 
of 8 nt across all cancer-specific SE events and control 
events.

Motif enrichment analysis

To analyze the enriched sequence motifs near the 
splice sites of the 163 cancerspecific AS events, we first 
obtained nucleotide sequences from three splicing regulatory 
regions: upstream intron (300 nt), exon and downstream 
intron (300 nt) as shown in Figure S3. When obtaining 
the sequences, we excluded the first 25 nucleotides right 
upstream of the skipped exon, the first 10 nucleotides right 
downstream of the skipped exon and the first and the last 
two nucleotides within the exon. We then calculated the 
frequency and Z-score of each 5-mer sequence from all 
163 sequences in three regulatory regions using methods 
described in [9]. All 5-mer sequences with Z-score larger 
than 2.5 were then clustered by sequence similarity and 
multiply aligned by using CLUSTALW to identify candidate 
motifs. At a cutoff dissimilarity score of 2.65, 2.7 and 2.7, we 
obtained 5, 7 and 5 clusters of at least four sequences in each 
cluster for upstream intron, exon and downstream intron 
respectively. Finally, we plotted the consensus sequence for 
each cluster for all three regulatory regions (Fig. S3).

Principal component analysis (PCA)

PCA is a data analysis technique commonly applied 
for dimension reduction, exploratory analysis and feature 
selection. PSI values of the 163 cancer-specific AS 
events were used to form the data vector for PCA. For 
each cancer type, the PSI vectors across all normal and 
tumor samples were then combined and used as the input 
data matrix to perform PCA using the prcomp() function 
in R. We also conducted PCA by combining the PSI 
values across all samples from three cancer types. The 
distribution of normal and cancer samples across the first 
two components were plotted.

Survival analysis for breast cancer patient

We obtained the overall survival data of breast 
cancer patients from the UCSC Cancer Browser (727 
patients). If a patient deceased (event happened), the 
“days_to_death” was used as the time variable; if a patient 
is still living, the time variable is the maximum of “days_
to_last_known_alive” and “days_to_last_followup”. The 
patient samples were split into two groups according 
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to the top or bottom quantile of PSI values for each of 
the 163 cancer-specific events. The resulted two patient 
groups are compared for their probability of survival using 
a Kaplan-Meier survival plot and the logrank P values 
are calculated. This process was repeated for every 
cancerspecific event.

Correlation between gene expression and AS

Correlations between genes and AS events were 
calculated using two matrices. One matrix consists of 
the PSI values of 163 cancer-specific AS events across 
1319 cancer and normal samples. Another matrix contains 
the expression level of every gene across 1319 samples. 
We computed the spearman rank correlation, ρ (rho), 
between every two vectors from the two matrices using 
cor.test() in R. Each pair with |ρ| > = 0.4 and p < = 0.005 
was considered as a highly correlated event-gene pair. 
We considered genes that are highly correlated with more 
than 30 cancer-specific AS events as potential regulators 
through a direct or indirect regulation. We then used 
STRING database [4, 5] (http://string-db.org/) to extract 
PPIs between these potential regulators (304 genes), 
and Cytoscape and MCODE to visualize and cluster the 
interaction networks.
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Supplementary Figure S1: The percentage of genes change in both expression level and splicing and the splicing 
isoform change in four AS modes. (A) For the genes containing cancer-specific AS (white circle) in each cancer type, a small fraction 
also showed significant changes in expression level between tumor and normal samples (grey circle). We used the following threshold 
for expression changes: the expression levels of each gene have to change by at least two fold between cancers vs normal with p-value  
<= 0.005. (B) The change of PSI values between paired tumor and normal samples were plotted in each cancer type and in all three cancers 
separately. ΔPSI was calculated as the PSI value in cancer sample minus the PSI value in paired normal control. Each dot represents a paired 
of cancer and normal sample.
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Supplementary Figure S2: Gene ontology analysis of AS events altered in three cancer types: BRCA (A), LIHC (B) 
and LUSC (C). We obtained the list of genes containing AS events that change significantly in their PSI values between tumor and 
normal samples in breast, liver and lung cancer datasets, and listed the highly enriched GO terms with pvalue less than 0.005 using DAVID 
gene ontology tool. The x-axis is the −log (P) of the enriched GO term.
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Supplementary Figure S3: Enriched motifs near cancer-specific skipped exons. The pentamers significantly enriched in each 
pre-mRNA region were identified and clustered into different groups according sequence similarity. The consensus motif in each group 
was represented with pictogram. Upstream intron: 300 nucleotides upstream of the skipped exon. The enriched Exon region: the whole 
exon sequences were used except the first and the last two nucleotides. Downstream intron: 300 nucleotides downstream of the skipped 
exon. The regions overlapping with splice sites (the first 10 nt and the last 25 nt of intorns) were excluded to avoid strong splicing signals.
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Supplementary Figure S4: Scatter plots of the standard deviation of PSI vs. mean of PSI. For each AS event, the PSI values 
and the standard deviation of PSI were plotted among all samples in breast, liver and lung cancer datasets. The distribution of all AS events 
(left) were compared to the AS events that significantly change between tumor and normal (right), and the control set was selected from all 
AS events with matched distribution of PSI values.
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Supplementary Figure S5: Histograms of the standard deviation of PSI for all AS events (top) or for 163 cancer-
specific AS events (bottom). The normal and tumor samples (in BRCA, LIHC and LUSC cancer) are plotted in different colors, and 
we found that for both types of AS events, the SD of PSI is larger (right-skewed) in tumor samples, suggesting that splicing in tumors are 
more dispersed. See also Fig 3E.
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Supplementary Figure S6: The proportion of variance explained by the first ten principal components. The cumulative 
proportions of variance are shown in red lines.
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Supplementary Table S3: MCODE Cluster results of proteins that are highly correlated with 
the cancer-specific AS
Cluster Score 

(Density*#Nodes)
Nodes Edges Node IDs

1 32 32 496

CENPO, SPC25, NDC80, AURKB, CENPH, MLF1IP, ERCC6L, 
CENPE, SPC24, BUB1B, ZWILCH, ZWINT, CENPK, CENPL, 
KIF18A, SGOL2, BIRC5, NUF2, BUB1, CENPA, SGOL1, 
SKA1, INCENP, CDCA8, KIF2C, CDC20, CENPN, CASC5, 
CENPI, CENPM, PLK1, CENPF

2 13.53 18 115
MCM6, CLSPN, CDT1, POLE2, POLA2, MCM10, CDC6, 
PRIM2, MCM4, DBF4, MCM7, CDC45, ORC1L, CDC7, 
ORC6L, CHEK1, CCNB1, MCM2

3 5 5 10 CCNE1, TYMS, E2F1, PCNA, RRM2

4 5 5 10 UBE2T, FANCA, FANCB, FANCD2, FANCI

5 4 4 6 KIF4A, SKA3, AURKA, PRC1

6 4 4 6 NCAPG, NCAPH, NCAPD2, SMC4

7 3 3 3 HJURP, OIP5, RUVBL1

8 3 3 3 UBE2C, PSMD2, PTTG1

9 3 3 3 RFC4, TIMELESS, RFC2

10 3 7 9 MND1, CDK1, RAD51, PKMYT1, CDC25A, CDK4, CCNE2

11 3 3 3 POLR2H, SNRPA1, HNRNPL

Parameters:
Network Scoring:
      Include Loops: false  Degree Cutoff: 2
   Cluster Finding:
      Node Score Cutoff: 0.2  Haircut: true  Fluff: false  K-Core: 2  Max. Depth from Seed: 100.

Supplementary Table S2: MCODE Cluster results of corresponding proteins of  
cancer-specific AS

Cluster Score 
(Density*#Nodes)

Nodes Edges Node IDs

1 9.28 26 116

POLE2, MYLK, LMNB1, FN1, CDCA8, ORC6L, RAD51AP1, 
SPAG5, PRC1, UBE2C, TUBA1A, CDKN2A, ESPL1, OIP5, 
AURKB, PKMYT1, TRIM59, MPHOSPH9, BIRC5, RAD54B, 
ATAD2, RECQL4, CDCA5, INCENP, RELN, KIFC1

2 4 14 26 FN1, SELP, ICAM3, KRT8, SPP1, COL5A1, COL6A3, CD44, 
NCAM1, CDKN2A, SLC3A2, RELN, ANXA2, ITGA6

3 4 10 18 HMGA1, PPARG, INSR, FN1, PTPN1, PPRC1, THRB, NCOR2, 
IRS1, ANXA2

Parameters:
Network Scoring:
      Include Loops: false  Degree Cutoff: 2
   Cluster Finding:
      Node Score Cutoff: 0.2  Haircut: false  Fluff: true  Fluff Density Cutoff 0.1   K-Core: 2  Max. Depth from Seed: 100.

Supplementary Table S1: 163 Cancer-specific AS events


